Product Description
Manufacturers Multiple Types/Size Flexible Coupling rubber shaft coupling 8AS for excavator coupling
Our main products:
steel cover lock, filter, oil grid, pump, cylinder head, crankshaft, camshaft, connecting rod, connecting rod bearing, valve, plunger, nozzle, exhaust valve, engine assembly, intake pump , fan blade, engine preheater, radiator, intake valve, main bearing, crankshaft bearing, nozzle, nozzle pipe, oil pump, piston, piston pin, piston ring, plunger, valve seat, thrust bearing, valve guide, valve Seats, valve seals, gasket sets, water pumps, turbochargers, generators, starters, sensors…
Please click here>>>>Contact us for more factory price,shipping and discounts
ENGINE CUSHION | ||||||||||||||
NO. | LB NO. | Model | OEM NO. | Name | NO. | LB NO. | Model | OEM NO. | Name | NO. | LB NO. | Model | OEM NO. | Name |
1 | KLB-Q3001 | PC40 | 105*53*10 | ENGINE CUSHION | 15 | KLB-Q3015 | E312 FRONT |
95*28*16 | ENGINE CUSHION | 29 | KLB-Q3571 | SK230 | 90*45*21 | ENGINE CUSHION |
2 | KLB-Q3002 | PC120-6 4D102 | 82*46*18 | ENGINE CUSHION | 16 | KLB-Q3016 | EX312 REAR |
95*29*17 | ENGINE CUSHION | 30 | KLB-Q3030 | HD250 | 59*31*13 | ENGINE CUSHION |
3 | KLB-Q3003 | PC200-3 | 124*68*45 205-01-71111 |
ENGINE CUSHION | 17 | KLB-Q3017 | ZAX230 FRONT |
95*28*16 | ENGINE CUSHION | 31 | KLB-Q3031 | HD450 FRONT |
97*15*19 | ENGINE CUSHION |
4 | KLB-Q3004 | PC200-5/6 FRONT |
80*46*19 20Y-01-12210 |
ENGINE CUSHION | 18 | KLB-Q3018 | E320B | 110*40*22 | ENGINE CUSHION | 32 | KLB-Q3032 | HD450 REAR |
118*36*19 | ENGINE CUSHION |
5 | KLB-Q3005 | PC200-5 REAR |
130*73*25 20Y-01-12221 |
ENGINE CUSHION | 19 | KLB-Q3019 | E330B | 136*44*25 | ENGINE CUSHION | 33 | KLB-Q3033 | LS120 | 87*42*17 | ENGINE CUSHION |
6 | KLB-Q3006 | PC200-6 6D102 |
20Y-01-12222 | ENGINE CUSHION | 20 | KLB-Q3571 | DH220-3 FRONT |
68*70*12 | ENGINE CUSHION | 34 | KLB-Q3034 | LS280 FRONT |
86*23*16 | ENGINE CUSHION |
7 | KLB-Q3007 | EX200 | ENGINE CUSHION | 21 | KLB-Q3571 | DH220-3 REAR |
110*105*14 | ENGINE CUSHION | 35 | KLB-Q3035 | LS280 REAR |
96*25*16 | ENGINE CUSHION | |
8 | KLB-Q3008 | EX200-5 REAR |
167*110*14 | ENGINE CUSHION | 22 | KLB-Q3571 | DH220-5 | 104*74*19 | ENGINE CUSHION | 36 | KLB-Q3036 | SH60 SH65 |
120*110*12 | ENGINE CUSHION |
9 | KLB-Q3009 | EX200-6 REAR |
175*135*16 | ENGINE CUSHION | 23 | KLB-Q3571 | DH280 FRONT |
165*200*16 | ENGINE CUSHION | 37 | KLB-Q3037 | 6D22 FRONT |
70*35*21 | ENGINE CUSHION |
10 | KLB-Q3571 | EX200 FRONT |
120*155*14 | ENGINE CUSHION | 24 | KLB-Q3571 | DH280 REAR |
200*110*20 | ENGINE CUSHION | 38 | KLB-Q3038 | 6D22 REAR |
95*41*22 | ENGINE CUSHION |
11 | KLB-Q3011 | EX200 REAR |
165*105*14 | ENGINE CUSHION | 25 | KLB-Q3571 | SK60 FRONT |
98*103*12 | ENGINE CUSHION | 39 | KLB-Q3039 | DH55 FRONT |
100*48*17 | ENGINE CUSHION |
12 | KLB-Q3012 | EX200 | 126*100*11 | ENGINE CUSHION | 26 | KLB-Q3026 | SK60 REAR |
98*103*16 | ENGINE CUSHION | 40 | KLB-Q3040 | SH200A3 | 137*160*16 | ENGINE CUSHION |
13 | KLB-Q3013 | EX300 FRONT |
87*35*20 | ENGINE CUSHION | 27 | KLB-Q3571 | SK120 FRONT |
100*15*19 | ENGINE CUSHION | |||||
14 | KLB-Q3014 | EX300 REAR |
110*39*22 | ENGINE CUSHION | 28 | KLB-Q3571 | SK120 FEAR |
100*47*19 | ENGINE CUSHION |
COUPLING | ||||||||||||||
NO. | LB NO. | Model | OEM NO. | Name | NO. | LB NO. | Model | OEM NO. | Name | NO. | LB NO. | Model | OEM NO. | Name |
1 | KLB-Q2001 | 25H 162*92 | COUPLING | 22 | KLB-Q2571 | 16A | 155*76 | COUPLING | 43 | KLB-Q2043 | S32S | 235*97 | COUPLING | |
2 | KLB-Q2002 | MS110 DH55 | 30H 195*105 | COUPLING | 23 | KLB-Q2571 | 16AS | 155*76 | COUPLING | 44 | KLB-Q2044 | S25S | 163*58 | COUPLING |
3 | KLB-Q2003 | 30H | 195*105 | COUPLING ASSY | 24 | KLB-Q2571 | 22A | 153*76 | COUPLING | 45 | KLB-Q2045 | E200B | 14T | COUPLING |
4 | KLB-Q2004 | EX200-2 | 40H 170*90 | COUPLING | 25 | KLB-Q2571 | 25A | 185*102 | COUPLING | 46 | KLB-Q2046 | 50AC | 14T 205*40 | COUPLING |
5 | KLB-Q2005 | 40H | 170*90 | COUPLING ASSY | 26 | KLB-Q2026 | 25AS | 185*102 | COUPLING | 47 | KLB-Q2047 | SH280 | COUPLING | |
6 | KLB-Q2006 | 45H | 183*92 | COUPLING | 27 | KLB-Q2571 | 28A | 178*93 | COUPLING | 48 | KLB-Q2048 | E200B 12T | COUPLING | |
7 | KLB-Q2007 | 45H | 183*92 | COUPLING ASSY | 28 | KLB-Q2571 | 28AS | 178*93 | COUPLING | 49 | KLB-Q2049 | 50AM 16T | 205*45 | COUPLING |
8 | KLB-Q2008 | 90H | 203*107 | COUPLING | 29 | KLB-Q2571 | 30A | 215*118 | COUPLING | 50 | KLB-Q2050 | SH200 | 14T 205*40 | COUPLING |
9 | KLB-Q2009 | 90H | 203*107 | COUPLING ASSY | 30 | KLB-Q2030 | 30AS | 215*118 | COUPLING | 51 | KLB-Q2051 | E330C | 350*145 | COUPLING |
10 | KLB-Q2571 | 50H | 195*110 | COUPLING | 31 | KLB-Q2031 | 50A | 205*108 | COUPLING | 52 | KLB-Q2052 | E330C | COUPLING | |
11 | KLB-Q2011 | 50H | 195*110 | COUPLING ASSY | 32 | KLB-Q2032 | 50AS | 205*108 | COUPLING | 53 | KLB-Q2053 | 168mm*48m 26T 3H | COUPLING | |
12 | KLB-Q2012 | 110H | 215*110 | COUPLING | 33 | KLB-Q2033 | 90A | 272*140 | COUPLING | 54 | KLB-Q2054 | 242mm*72mm 50T 8H | COUPLING | |
13 | KLB-Q2013 | 110H | 215*110 | COUPLING ASSY | 34 | KLB-Q2034 | 90AS | 272*140 | COUPLING | 55 | KLB-Q2055 | 295mm*161mm 48T 12H | COUPLING | |
14 | KLB-Q2014 | 140H | 245*125 | COUPLING | 35 | KLB-Q2035 | 140A | 262*132 | COUPLING | 56 | KLB-Q2056 | 352mm*161mm 48T 8H | COUPLING | |
15 | KLB-Q2015 | 140H | 245*125 | COUPLING ASSY | 36 | KLB-Q2036 | 140AS | 262*132 | COUPLING | 57 | KLB-Q2057 | 352mm*161mm 46T 8H | COUPLING | |
16 | KLB-Q2016 | 160H | 255*134 | COUPLING | 37 | KLB-Q2037 | E300B | 16T 278*54 | COUPLING | 58 | KLB-Q2058 | 318mm*72mm 50T 8H | COUPLING | |
17 | KLB-Q2017 | 160H | 255*134 | COUPLING ASSY | 38 | KLB-Q2038 | E450 | 16T 360*52 | COUPLING | 59 | KLB-Q2059 | 315mm 42T | COUPLING | |
18 | KLB-Q2018 | 4A | 104*53 | COUPLING | 39 | KLB-Q2039 | SH430 | 12T 205*35 | COUPLING | 60 | KLB-Q2060 | 268mm*100mm 42T 6H | COUPLING | |
19 | KLB-Q2019 | 4AS | 104*53 | COUPLING | 40 | KLB-Q2040 | SH200 | 14T 205*40 | COUPLING | 61 | KLB-Q2061 | 167mm*90mm 47T 3H | COUPLING | |
20 | KLB-Q2571 | 8A | 130*70 | COUPLING | 41 | KLB-Q2041 | 50ASM | 20T 205*40 | COUPLING | 62 | KLB-Q2062 | 182mm 42T | COUPLING | |
21 | KLB-Q2571 | 8AS | 130*70 | COUPLING | 42 | KLB-Q2042 | SH160(SH60) | 15T 173*22 | COUPLING | 63 | KLB-Q2063 | 220mm 46T | COUPLING |
1Q:What is your brand?
1A:Our own brand: Mita Group and its range of excavator parts.
2Q:Do you have your own factory? Can we have a visit?
2A:Absolutely, you are alwayswelcome to visit our factory.
3Q:How do you control the quality of the products?
3A:Our factory was obtained the ISO9001CERTIFICATE.Every process of the production is strictly controlled. And all products will be inspected by QC before shipment.
4Q:How long is the delivery time?
4A:2 to 7 days for ex-stock orders. 15 to 30 days for production.
5Q:Can we print our company logo onproduct and package?
5A:Yes, but the quantity of the order is required. And we need you to offer the Trademark Authorization to us.
6Q:Can you provide OEM BRAND package?
6A:Sorry, we can only offer our company ACT BRAND package or neutral packing,blank package ifyou need, and the Buyers’ Brand as authorized.7Q:How long is the warranty period?7A:3 months
How do you install and align a flexible coupling properly to ensure optimal performance?
Proper installation and alignment of a flexible coupling are essential to ensure its optimal performance and longevity. Incorrect installation can lead to premature wear, increased vibrations, and potential equipment failure. Below are the steps to install and align a flexible coupling properly:
1. Pre-Installation Inspection:
Before installation, inspect the flexible coupling and its components for any visible damage or defects. Check that the coupling’s size and specifications match the application requirements. Ensure that the shafts and equipment connected to the coupling are clean and free from debris.
2. Shaft Preparation:
Prepare the shafts by removing any oil, grease, or contaminants from the surfaces that will come into contact with the coupling. Ensure that the shaft ends are smooth and free from burrs that could affect the fit of the coupling.
3. Coupling Hub Installation:
Slide the coupling hubs onto the shafts, ensuring they are positioned securely and evenly on each shaft. Use a lubricant recommended by the manufacturer to facilitate the installation and ensure a proper fit.
4. Alignment:
Proper alignment is critical for the performance and longevity of the flexible coupling. Align the shafts by checking both angular and parallel misalignment. Utilize precision alignment tools, such as dial indicators or laser alignment systems, to achieve accurate alignment. Follow the manufacturer’s alignment specifications and tolerance limits.
5. Tightening Fasteners:
Once the shafts are properly aligned, tighten the coupling’s fasteners to the manufacturer’s recommended torque values. Gradually tighten the fasteners in a cross pattern to ensure even distribution of the load on the coupling hubs. Avoid over-tightening, as it may cause distortion or damage to the coupling.
6. Run-Out Check:
After installation, perform a run-out check to verify that the coupling’s rotating components are balanced and aligned. Excessive run-out can lead to vibrations and reduce the coupling’s performance. If significant run-out is detected, recheck the alignment and address any issues that may be causing it.
7. Lubrication:
Ensure that the flexible coupling is adequately lubricated, following the manufacturer’s recommendations. Proper lubrication reduces friction and wear, enhancing the coupling’s efficiency and reliability.
8. Periodic Inspection and Maintenance:
Regularly inspect the flexible coupling for signs of wear, misalignment, or damage. Address any issues promptly to prevent further problems. Depending on the coupling type and application, scheduled maintenance may include re-greasing, re-alignment, or replacing worn components.
Summary:
Proper installation and alignment are crucial for ensuring the optimal performance and longevity of a flexible coupling. Following the manufacturer’s guidelines, inspecting the components, achieving accurate alignment, and using the appropriate lubrication are key steps in the installation process. Regular inspection and maintenance help to identify and address potential issues, ensuring the coupling continues to operate smoothly and efficiently in the mechanical system.
Can flexible couplings be used in high-temperature environments, such as furnaces and kilns?
Flexible couplings can be used in high-temperature environments, such as furnaces and kilns, but the selection of the appropriate coupling is crucial to ensure reliable performance and longevity under these extreme conditions. Here are some key considerations:
- Material Selection: The choice of materials is critical when using flexible couplings in high-temperature applications. Look for couplings made from heat-resistant materials that can withstand the elevated temperatures without experiencing significant degradation. Common materials used for high-temperature couplings include stainless steel, high-temperature alloys, and certain types of elastomers designed for heat resistance.
- Lubrication: High temperatures can cause lubricants to break down or evaporate more quickly. Some flexible couplings may require specialized high-temperature lubricants to ensure smooth operation and reduce wear at elevated temperatures. Check the manufacturer’s recommendations for lubrication in high-temperature environments.
- Thermal Expansion: In high-temperature applications, the equipment and shafts may experience thermal expansion, leading to misalignment. Flexible couplings with higher misalignment capabilities may be necessary to accommodate these thermal effects and prevent additional stress on the system.
- Torsional Stiffness: Consider the required torsional stiffness for the specific application. In high-temperature environments, couplings may experience changes in stiffness due to temperature variations. It is essential to choose a coupling with appropriate torsional characteristics for the intended operating temperature range.
- Application Specifics: Evaluate the specific operating conditions of the furnace or kiln, including the maximum and fluctuating temperatures, vibration levels, and potential exposure to chemicals or other harsh elements. Choose a coupling that can withstand these conditions without compromising performance or safety.
- Coupling Type: Different types of flexible couplings offer varying degrees of heat resistance and performance capabilities. For example, certain types of disc couplings or metal bellows couplings are more suitable for high-temperature environments due to their robust construction and resistance to heat.
- Regular Maintenance: In high-temperature applications, couplings may be subject to more stress and wear. Regular inspection and maintenance are essential to monitor the coupling’s condition, lubrication, and alignment to ensure it continues to function optimally in the challenging environment.
Overall, flexible couplings can be utilized in high-temperature environments, but it is vital to choose a coupling specifically designed and rated for these conditions. Working closely with coupling manufacturers and considering the specific demands of the application will help ensure that the selected coupling can handle the challenges posed by furnaces, kilns, and other high-temperature equipment, providing reliable power transmission and contributing to the overall efficiency and safety of the system.
Can flexible couplings be used in corrosive or harsh environments?
Yes, flexible couplings can be designed and selected to be used in corrosive or harsh environments. The choice of materials and coatings plays a crucial role in ensuring the coupling’s durability and performance under challenging conditions.
Corrosion-Resistant Materials:
In corrosive environments, it is essential to use materials that can withstand chemical attacks and oxidation. Stainless steel, specifically grades like 316 or 17-4 PH, is commonly chosen for flexible couplings in such situations. Stainless steel offers excellent corrosion resistance, making it suitable for applications where the coupling may come into contact with corrosive substances or moisture.
Special Coatings:
For certain harsh environments, coupling manufacturers may apply special coatings to enhance the coupling’s corrosion resistance. Examples of coatings include zinc plating, nickel plating, or epoxy coatings. These coatings provide an additional layer of protection against corrosive agents and help extend the coupling’s lifespan.
Sealed Designs:
In environments where the coupling is exposed to contaminants like dust, dirt, or moisture, sealed designs are preferred. Sealed flexible couplings prevent these substances from entering the coupling’s internal components, thus reducing the risk of corrosion and wear. The sealed design also helps to maintain the coupling’s performance over time in challenging conditions.
High-Temperature Applications:
For harsh environments with high temperatures, flexible couplings made from high-temperature resistant materials, such as certain heat-resistant stainless steels or superalloys, can be used. These materials retain their mechanical properties and corrosion resistance even at elevated temperatures.
Chemical Resistance:
For applications where the coupling might encounter chemicals or solvents, it is essential to select a coupling material that is chemically resistant. This prevents degradation and ensures the coupling’s integrity in such environments.
Specialized Designs:
In some cases, where the environment is exceptionally harsh or unique, custom-designed flexible couplings may be necessary. Engineering a coupling to meet the specific demands of the environment ensures optimal performance and reliability.
Consultation with Manufacturers:
When considering flexible couplings for corrosive or harsh environments, it is advisable to consult with coupling manufacturers or engineering experts. They can provide valuable insights and recommend suitable materials, coatings, and designs based on the specific operating conditions.
Summary:
Flexible couplings can indeed be used in corrosive or harsh environments, provided the appropriate materials, coatings, and designs are chosen. Stainless steel, sealed designs, and special coatings are some of the solutions that enhance the coupling’s corrosion resistance and performance. It is essential to consider the specific environment and application requirements when selecting a flexible coupling to ensure optimal functionality and durability in challenging conditions.
editor by CX 2023-09-08