China best Cheaper High Torque Spider Type Jaw Coupling for Motor motor coupling

Product Description

Cheaper High Torque Spider Type Jaw Coupling for motor

Quick Details
Structure: Jaw / Spider
Flexible or Rigid: Flexible
Standard or Nonstandard: Standard
Material: Aluminium
Brand Name: YD
Place of Origin: ZheJiang , China (Mainland)
Model Number: JM
Certificate: ISO9001:2008
Bore forming: Made by CNC centres
Unique Feature: Exquisite Workmanship
Bore Size: Meet inch dimension
Invertory: In stock
Spider color: Red (Green and Yellow selected)
Area of Min.aperture: 3-22mm
Area of Max.Aperture: 7-80mm
Max. Torque: 2.4-1880mm

Features:
1. Light weight, smal  moment of inertia and high torque.
2. Getting  the drive vibration buffer, and absorbing the impact generated by motor’s uneven operation
3. Effectively correcting  the installation deviation of axial and radial and angular

Your kind response of below questions will help us to recommed the most suitable model to you asap.
1.Are you looking for JM type(setscrew) or JM-C type(clamp)?
2.What is coupling outer dimeter size?
3.What is coupling inner bore size and length?
4.What is coupling material(aluminium or Stainless steel )?

Dimensions:

  Model

 

Inner Diameter Outer
Diameter
Length Torque(N.M.)
D1 D2
Min. Max. Min. Max.
JM14 3 7 3 7 14 22 0.7
JM16 3 7 3 7 16 22 0.7
JM20 4 10 4 10 20 30 1.7
JM25 4 12 4 12 25 34 1.7
JM30 5 16 5 16 30 35 1.7
JM40 6 24 6 24 40 66 4.0
JM55 8 28 8 28 55 78 4.0
JM65 10 38 10 38 65 90 15.0
JM80 12 45 12 45 80 114 15.0
JM95 14 55 14 55 95 126 15.0
JM105 15 62 15 62 105 140 15.0
JM120 20 74 20 74 120 160 32.0
JM135 22 80 22 80 135 185 32.0
 

Packaging Details:
Wooden or ply cases for export standard or according to the customers
Delivery Detail:3-5 days after receiving the 30% deposit

Contact Us

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

motor coupling

Understanding the Torque and Misalignment Capabilities of Motor Couplings

Motor couplings play a crucial role in transmitting torque from the motor to the driven equipment while accommodating certain degrees of misalignment between the shafts. Here’s a detailed explanation of their torque and misalignment capabilities:

Torque Transmission:

Torque transmission is one of the primary functions of a motor coupling. It refers to the ability of the coupling to transfer rotational force (torque) from the motor shaft to the driven equipment shaft. The torque capacity of a coupling depends on various factors, including:

  • Coupling Type: Different coupling types have varying torque capacities. For instance, gear couplings have high torque capacity, making them suitable for heavy-duty applications.
  • Material and Design: The material and design of the coupling elements play a role in determining its torque capacity. Couplings made from high-strength materials can handle higher torque loads.
  • Size: The size of the coupling affects its torque capacity. Larger couplings generally have higher torque ratings.
  • Operating Conditions: Environmental factors, temperature, and speed also influence the torque capacity of the coupling.

Misalignment Compensation:

Motor couplings are designed to accommodate a certain degree of misalignment between the motor and driven equipment shafts. Misalignment can occur due to factors such as manufacturing tolerances, thermal expansion, and operational conditions. The misalignment capability of a coupling depends on its type and design:

  • Flexible Couplings: Flexible couplings, such as jaw couplings or elastomeric couplings, can handle both angular and parallel misalignment. They provide some flexibility to dampen vibrations and compensate for minor misalignment.
  • Universal Joints: Universal joints can handle angular misalignment and are commonly used in applications requiring a high range of motion, such as vehicle drivelines.
  • Disc Couplings: Disc couplings can handle angular misalignment and provide high torsional stiffness for precision applications.
  • Bellows Couplings: Bellows couplings are suitable for applications requiring high levels of parallel misalignment compensation, such as in optical equipment.

It is essential to consider the torque and misalignment requirements of the specific application when selecting a motor coupling. Properly matching the coupling’s capabilities to the system’s needs ensures efficient torque transmission and helps prevent premature wear or failure due to misalignment issues.

“`motor coupling

Comparing Motor Couplings with Direct Drives and Other Power Transmission Methods

Motor couplings, direct drives, and other power transmission methods each have their advantages and disadvantages, making them suitable for different applications. Let’s compare these methods in terms of various factors:

1. Efficiency:

Motor couplings generally offer high efficiency in power transmission since they provide a direct mechanical connection between the motor and driven equipment. In contrast, direct drives can also be efficient as they eliminate the need for intermediate components.

2. Misalignment Compensation:

Motor couplings are designed to accommodate misalignments between the motor and driven equipment shafts, making them suitable for applications where misalignment is expected. Direct drives, on the other hand, require precise alignment between the motor and driven equipment.

3. Maintenance:

Motor couplings often have minimal maintenance requirements since they do not have intricate components. Direct drives can be maintenance-free as well since they eliminate the need for belts, chains, or gears.

4. Backlash:

Motor couplings typically have low or zero backlash, ensuring precise torque transmission. Direct drives also offer low or no backlash since there are no intermediate components to introduce play.

5. Cost:

Motor couplings are generally more cost-effective compared to direct drives, which may involve higher initial investment in specialized components. However, the overall cost may vary depending on the application and system requirements.

6. Space and Size:

Motor couplings are compact and can fit in tight spaces, making them suitable for applications with limited room. Direct drives may require more space, depending on their design and motor size.

7. Shock Absorption:

Motor couplings, especially those with elastomeric elements, can absorb shocks and vibrations, protecting the motor and driven equipment. Direct drives may not have the same level of shock absorption.

8. Torque Transmission:

Both motor couplings and direct drives are efficient in torque transmission. However, some direct drives may offer higher torque capacity for heavy-duty applications.

9. Installation Complexity:

Motor couplings are generally easier to install compared to direct drives, which may involve more intricate assembly and alignment procedures.

10. Application:

Motor couplings are versatile and can be used in various industrial setups, especially when misalignment compensation is required. Direct drives are commonly found in applications where high precision and direct mechanical connection are crucial.

Ultimately, the choice between motor couplings, direct drives, and other power transmission methods depends on the specific needs and constraints of the application. Each method offers distinct advantages, and selecting the most suitable option requires careful consideration of the application’s requirements, space limitations, budget, and maintenance preferences.

“`motor coupling

Types of Motor Couplings and Their Applications in Different Industries

Motor couplings come in various types, each designed to meet specific requirements and applications in different industries. Here are some common types of motor couplings and their typical uses:

1. Rigid Couplings:

Rigid couplings provide a solid and inflexible connection between the motor shaft and the driven equipment. They are ideal for applications where precise alignment and torque transmission are critical. Rigid couplings are commonly used in machine tools, robotics, and high-precision industrial equipment.

2. Flexible Couplings:

Flexible couplings are designed to accommodate misalignment between the motor and driven equipment shafts. They can handle angular, parallel, and axial misalignment, reducing stress on bearings and increasing the system’s flexibility. Flexible couplings find applications in pumps, compressors, conveyors, and other machinery where misalignment may occur due to vibration or thermal expansion.

3. Gear Couplings:

Gear couplings use toothed gears to transmit torque between the motor and the driven equipment. They provide high torque capacity and are suitable for heavy-duty applications, such as steel rolling mills, cranes, and marine propulsion systems.

4. Disc Couplings:

Disc couplings use thin metal discs to transmit torque. They offer high torsional stiffness, allowing precise motion control in applications like servo systems, CNC machines, and robotics.

5. Jaw Couplings:

Jaw couplings use elastomeric elements to dampen vibrations and accommodate misalignment. They are commonly used in small electric motors and general-purpose machinery.

6. Bellows Couplings:

Bellows couplings have a flexible accordion-like structure that compensates for misalignment while maintaining torsional rigidity. They are used in vacuum systems, optical equipment, and other high-precision applications.

7. Grid Couplings:

Grid couplings use a flexible grid element to transmit torque and dampen vibrations. They are suitable for applications in pumps, compressors, and conveyor systems where shock loads and misalignment are common.

8. Magnetic Couplings:

Magnetic couplings use magnetic fields to transmit torque between the motor and driven equipment. They are commonly used in applications requiring hermetic sealing, such as pumps and mixers handling hazardous or corrosive fluids.

Each type of motor coupling offers unique advantages and is chosen based on the specific needs of the industry and the application. Proper selection and installation of the right coupling type enhance efficiency, reliability, and safety in motor-driven systems across various industries.

“`
China best Cheaper High Torque Spider Type Jaw Coupling for Motor   motor couplingChina best Cheaper High Torque Spider Type Jaw Coupling for Motor   motor coupling
editor by CX 2024-04-17

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *